Original article | Journal of Innovative Research in Teacher Education 2022, Vol. 3(3) 321-338
Ahmet Atasayar & Metin Demir
pp. 321 - 338 | DOI: https://doi.org/10.29329/jirte.2022.479.5 | Manu. Number: MANU-2209-06-0005.R1
Published online: December 09, 2022 | Number of Views: 83 | Number of Download: 672
Abstract
This study aimed to investigate the prediction level of science success in high school entrance exams (HSEE /LGS) using artificial neural networks (ANNs) by associating students’ success in science classes from the 4th-grade elementary level. The Pearson Moment Product Correlation analysis results were analyzed using the SPSS program to examine the connection between students' performance on the LGS science subtest and their academic achievement in science. In the MATLAB program, artificial neural network modeling performance was examined to understand the level of prediction. The data sets were obtained from the electronic school system of the Ministry of National Education for the 4th to 8th- grades of 1027 students graduating from 24 schools in 17 districts of Bursa in the 2017-2018 academic year and entered the 2018 LGS and LGS result documents without personal information. When the correlations between the LGS science sub-test and science test success were examined (p <.001), the highest and lowest correlations were found in the 8th-grade science exams (r = .70) and the 4th-grade ones (r=.57), respectively. The highest performance values were learning R=.80, verification R=.74, and test R=.75, RMSE=2.35 at the network architecture, generated in the second sub-problem and the trained network with 845 student data. A high-level relationship with r=.75 (p<.001) using the data of 182 students was obtained, while the correct numbers of simulated real LGS science sub-tests compared with the correct numbers predicted by the computer after the training process of the network. In addition, it was obtained that 124 students out of 182 were correctly estimated in the [+ 2, -2] error value range.
Keywords: Science, High school entrance exam, Classroom training, Artificial neural network
How to Cite this Article? |
---|
APA 6th edition Harvard Chicago 16th edition |
References |
---|
Abu-Naser, S. S., Zaqout, I. S., Abu Ghosh, M., Atallah, R. R., & Alajrami, E. (2015). Predicting student performance using artificial neural network: In the faculty of engineering and information technology. International Journal of Hybrid Information Technology, 8(2), 221-228. https:// dx.doi.org/10.14257/ijhit.2015.8.2.20 Aghalarova, S., & Bozkurt Keser, S. (2021). Önerilen yapay sinir ağı algoritması ile ortaokul öğrencilerin akademik performansının tahmini [Prediction of secondary school students' academic performance with proposed artificial neural networks algorithm]. Data Science, 4(2), 19-32. Retrieved from https://dergipark.org.tr/tr/pub/veri/issue/64538/850770 Access Date: 22/09/2022 Aiken, L. R. (1971). Psychological testing and assessment. (2nd ed.), Boston: Pearson Education Group. Altun, M., Kayıkçı, K., & Irmak, S. (2019). Sınıf öğretmenliği öğrencilerinin mezuniyet notlarının regresyon analizi ve yapay sinir ağları yöntemleriyle tahmini [Estimation of graduation grades of primary education students by using regression analysis and artificial neural networks]. E-International Journal of Educational Research, 10(3), 29–43. https://dx.doi.org/10.19160/ijer.624839 Arslandaş, Y. (2019). İlkokul öğrencilerinin okula yönelik iyi olma hali ve fen başarıları arasındaki ilişki [The relationship between primary students school related wellbeing and science achievement] (Master’s thesis), Kocaeli University, Kocaeli. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 01/11/2022 Aydın, M. (2007). Çağdaş eğitim denetimi [Contemporary educational supervision]. (5th ed.), Ankara: Hatiboğlu. Aydoğan, İ., & Zırhlıoğlu, G. (2018). Öğrenci başarılarının yapay sinir ağları ile kestirilmesi [Estimation of Student Successes by Artificial Neural Networks]. Van Yüzüncü Yıl University Journal of Faculty of Education, 15(1), 577-610. https://dx.doi.org/10.23891/efdyyu.2018.80 Ayık, Y. Z., Özdemir, A., & Yavuz, U. (2007). Lise türü ve lise mezuniyet başarısının kazanılan fakülte ile ilişkisinin veri madenciliği tekniği ile analizi [Analysis of the relationship between high school type and high school graduation success with the acquired faculty using data mining technique]. Journal of Atatürk University Graduate School of Social Sciences, 10(2), 441-454. Retrieved from https://dergipark.org.tr/tr/pub/ataunisosbil/issue/2820/38029 Access Date: 22/09/2022 Bahadır, Y. (2013). Cam elyaf katkılı cephe kaplama elemanlarına yönelik teklif fiyatı tahmininde yapay sinir ağlarının (YSA) kullanılması [The use of artificial neural networks (ANN) in the bid price estimation for glass fiber reinforced facade cladding elements] (Master’s thesis), İstanbul Technical University, İstanbul. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Baş, G. (2013). İlköğretim İngilizce dersi akademik ortalamaları ile seviye belirleme sınavı İngilizce alt testi sonuçları arasındaki ilişkinin yapısal eşitlik modeli ile incelenmesi [Investigating the correlation between academic averages of elementary English course and English subtest scores in level determination examination with structural equation modelling]. Ondokuz Mayıs University Journal of Education Faculty, 32(2), 55-76. Retrieved from https://dergipark.org.tr/en/pub/omuefd/issue/20245/214770 Access Date: 22/09/2022 Başer, E. (2022). LGS İnkılap Tarihi ve Atatürkçülük alt testi doğru sayılarının yapay zeka yöntemleriyle tahmin edilmesi [Estimating LGS Revolution History and Kemalism subtest correct numbers using artificial intelligence methods]. (Doctoral dissertation), Kütahya Dumlupınar University, Kütahya. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Başol, G., & Zabun, E. (2014). The predictors of success in Turkish High School Placement Exams: Exam prep courses, perfectionism, parental attitudes and test anxiety. Educational Sciences: Theory and Practice, 14(1), 78-87. https://dx.doi.org/ 10.12738/estp.2014.1.1980 Baykul, Y. (2000). Eğitimde ve psikolojide ölçme: Klasik test teorisi ve uygulaması [Measurement in education and psychology: Classical test theory and practice]. Ankara: ÖSYM Publications. Bozdağ, C. H. (2019). 5. sınıf öğrencilerinin fen bilimlerine yönelik motivasyonları, tutumları ve fen başarıları arasındaki ilişki [The relationship between fifth-grade students’ motivations, attitudes towards science and science achievement]. Mersin University Journal of Faculty of Education, 15(3), 720-740. https://dx.doi.org/10.17860/mersinefd.592823 Buldu, E. & Olgan, R. (2018). Fen okur-yazarlık beceri puanları arasındaki farklılaşmanın bazı göstergeler açısından incelenmesi: PISA Türkiye bulguları [Examining differences between scores on science literacy skills from the viewpoint of certain indicators: Results of PISA-Turkey]. Journal of Human Sciences, 15(3), 1453-1465. https://dx.doi.org/10.14687/jhs.v15i3.5279 Bursal, M. (2013). Longitudinal investigation of elementary students' science academic achievement in 4-8th grades: Grade level and gender differences. Educational Sciences: Theory and Practice, 13(2), 1151-1156. Retrieved from https://eric.ed.gov/?id=EJ1017289 Access Date: 22/09/2022 Cameron, S. V., & Heckman, J. J. (2001). The dynamics of educational attainment for black, Hispanic, and white males. Journal of political Economy, 109(3), 455-499. https://dx.doi.org/10.1086/321014 Chan, Y. L., & Norlizah, C. H. (2017). Students’ motivation towards science learning and students’ science achievement. International Journal of Academic Research in Progressive Education and Development, 6(4), 174-198. https://dx.doi.org/10.6007/IJARPED/v6-i4/3716 Cortez, P., & Silva, A. (2008). Using data mining to predict secondary school student performance. In Brito, A., & Teixeira, J. (Eds.), Proceedings of 5th Annual Future Business Technology Conference (p. 5-12). Porto: Eurosis. Çırak, G. (2012). Yükseköğretimde öğrenci başarılarının sınıflandırılmasında yapay sinir ağları ve lojistik regresyon yöntemlerinin kullanılması [The usage of artificial neural network and logistic regression methods in the classification of student achievement at higher education]. (Master’s thesis), Ankara University, Ankara. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Çırak, G. & Çokluk, Ö. (2013). Yükseköğretimde öğrenci başarılarının sınıflandırılmasında yapay sinir ağları ve lojistik regresyon yöntemlerinin kullanılması [The usage of artificial neural network and logistic regression methods in the classification of student achievement in higher education]. Mediterranean Journal of Humanities, 3(2) 71-79. https://dx.doi.org/10.13114/MJH/201322471 Deyhle, D. (1995). Navajo youth and Anglo racism: Cultural integrity and resistance. Harvard Educational Review, 65(3), 403-444. https://dx.doi.org/10.17763/haer.65.3.156624q12053470n Demir, M. (2015). Predicting pre-service classroom teachers’ civil servant recruitment examination’s educational sciences test scores using artificial neural networks. Educational Sciences: Theory & Practice, 15(5), 1169-1177. https://dx.doi.org/10.12738/estp.2015.5.0018 Deniz, K. Z. & Kelecioğlu, H. (2005). İlköğretim başarı ölçüleri ile ortaöğretim kurumları öğrenci seçme ve yerleştirme sınavı arasındaki ilişkiler [The relations between primary education academic achievement grades and “the exam of student selection and placement for high school” scores]. Ankara University Journal of Faculty of Educational Sciences (JFES), 38(2), 127-143. https://doi.org/10.1501/Egifak_0000000119 Dharmasaroja, P., & Kingkaew, N. (2016, August). Application of artificial neural networks for prediction of learning performances. 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD 2016), (pp. 745-751), Changsha, China. http://dx.doi.org/10.1109/FSKD.2016.7603268 El-Refae, G. A., & Al-Shayea, Q. K. (2010). Predicting students’ academic performance using artificial neural networks: A case study. International Journal of Computer Science and Information Security (IJCSIS), 8(5), 97-100. Retrieved from http://www.epess.net/en/download/article-file/332072 Access Date: 22/09/2022 Güneri, N., & Apaydın, A. (2004). Öğrenci başarılarının sınıflandırılmasında lojistik regresyon analizi ve sinir ağları yaklaşımı [Logistic regression analysis and neural networks approach in the classification of students’ achievement]. Journal of Faculty of Commerce and Tourism Education, 1, 170-188. Retrieved from https://www.researchgate.net/publication/325871936 Access Date: 22/09/2022 Güzeller, C. O. (2005). Ortaöğretim kurumları öğrenci seçme ve yerleştirme sınavının geçerliliği [Validity of secondary education institutions student selections and placement exam in Turkey]. (Doctoral Dissertation), Hacettepe University, Ankara. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Güzeller, C. O. (2012). İlköğretim fen ve teknoloji dersi akademik ortalamaları ile seviye belirleme sınavı fen bilimleri alt testi puanları arasındaki ilişki [The relationship between primary school science and technology course academic averages and level determination exam science subtest scores]. Journal of Educational Sciences in Theory and Practice, 12(1), 201-214. Retrieved from https://www.academia.edu/download/33866256/8c45b7d3b4a62b7dc81f876fa861969a11a.pdf Access Date: 22/09/2022 Hamoud, A., & Humadi, A. (2019). Student’s success prediction model based on artificial neural networks (ANN) and a combination of feature selection methods. Journal of Southwest Jiaotong University, 54(3). https://doi.org/10.35741/issn.0258-2724.54.3.25 Hanımoğlu, E., & İnanç, B. Y. (2011). Seviye belirleme sınavına girecek olan ilköğretim ikinci kademe öğrencilerinde sınav kaygısı mükemmeliyetçilik ve anne baba tutumu arasındaki ilişkinin incelenmesi [The analysis of the relation among test anxiety, perfectionism and the attitudes of parents of the secondary students who will pass placement tests]. Journal of Çukurova University Institute of Social Sciences, 20(1), 351-366. Retrieved from https://dergipark.org.tr/tr/pub/cusosbil/issue/4386/60268 Access Date: 22/09/2022 Ibrahim, Z., & Rusli, D. (2007). Predicting students’ academic performance: comparing artificial neural network, decision tree and linear regression. Kuala Lumpur: 21st Annual SAS Malaysia Forum. Kahraman, Ü., & Çelik, K. (2017). PISA 2012 sonuçlarının bazı değişkenler açısından incelenmesi [Analysis of PISA 2012 results in terms of some variables]. Journal of Human Sciences, 14(4), 4797-4808. https://dx.doi.org/10.14687/jhs.v14i4.5136 Kan, A. (2005). ÖSS’ye kaynaklık eden alan derslerindeki başarı ile ÖSS’den elde edilen puanlar arasındaki ilişkinin incelenmesi [The relationship between students’ academic grades and OSS scores]. Education and Science, 30(137), 38-44. Retrieved from http://213.14.10.181/index.php/EB/article/view/5064/1151 Access Date: 22/09/2022 Karakoç, G., & Köse, İ. A. (2018). İlköğretim akademik başarı ölçüleri ile temel eğitimden ortaöğretime geçiş sınav puanları arasındaki ilişki [The relationship between elementary school academic achievement levels and high school entrance exam scores]. Cumhuriyet International Journal of Education, 7(2), 121-142. https://dx.doi.org/10.30703/cije.392386 Karamouzis, S. T., & Vrettos, A. (2008). An artificial neural network for predicting student graduation outcomes. In World Congress on Engineering and Computer Science (pp. 991-994), October 22-24, San Francisco, USA. Karasar, N. (1999). Bilimsel araştırma yöntemi: Kavramlar, ilkeler, teknikler [Scientific research method: concepts, principles, techniques]. (6th ed.), Ankara: Nobel. Kardan, A. A., Sadeghi, H., Ghidary, S. S., & Sani, M. R. F. (2013). Prediction of student course selection in online higher education institutes using neural network. Computers & Education, 65, 1-11. https://dx.doi.org/10.1016/j.compedu.2013.01.015 Kotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting students' performance in distance learning using machine learning techniques. Applied Artificial Intelligence, 18(5), 411-426. https://dx.doi.org/10.1080/08839510490442058 Lau, L. K. (2003). Institutional factors affecting student retention. Education, 124(1), 126-136. Retrieved from https://elibrary.ru/item.asp?id=7664768 Access Date: 22/09/2022 Leong, K. E., Tan, P. P., Lau, P. L., & Yong, S. L. (2018). Exploring the relationship between motivation and science achievement of secondary students. Journal of Social Science and Humanities, 26(4), 1-16. Retrieved from https://www.researchgate.net/publication/329936451 Access Date: 22/09/2022 Liou, P. Y., & Ho, H. N. (2018). Relationship among instructional practices, students’ motivational beliefs and science achievement in Taiwan using hierarchical linear modelling. Research Papers in Education, 33(1), 73-88. Retrieved from https://eric.ed.gov/?id=EJ1163019 Access Date: 22/09/2022 Masters, T. (1995). Advanced algorithms for neural networks: a C++ sourcebook (1st ed.). New York: Wiley. Ministry of National Education. [MoNE] (2018). Sınavla öğrenci alacak ortaöğretim kurumlarına ilişkin merkezi sınav başvuru ve uygulama kılavuzu [Central exam application and application guide for secondary education institutions that will take students by exam]. Ankara: MoNE Publications. Mo, Y. (2008). Opportunity to learn, engagement, and science achievement: Evidence form TIMSS 2003 data. (Doctoral Dissertation), Educational Research and Evaluation, Virginia. Retrieved from https://vtechworks.lib.vt.edu/handle/10919/29564 Access Date: 22/09/2022 Musso, M. F., Kyndt, E., Cascallar, E. C., & Dochy, F. (2013). Predicting general academic performance and identifying the differential contribution of participating variables using artificial neural networks. Frontline Learning Research, 1(1), 42-71. https://dx.doi.org/10.14786/flr.v1i1.13 Nas, S. (2015). Ortaokul öğrencilerinin fen akademik başarıları ile diğer dersler akademik başarıları arasındaki ilişkinin araştırılması [Investigation of relationship between science academic achievement and other courses academic achievement of middle school students]. (Master’s thesis), Gazi University, Ankara. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Naser, S. A., Zaqout, I., Ghosh, M. A., Atallah, R., & Alajrami, E. (2015). Predicting student performance using artificial neural network: In the faculty of engineering and information technology. International Journal of Hybrid Information Technology, 8(2), 221-228. https://dx.doi.org/10.14257/ijhit.2015.8.2.20 Oancea, B., Dragoescu, R., & Ciucu, S. (2013). Predicting students’ results in higher education using a neural network. Paper presented at International Conference on Applied Information and Communication Technologies (pp. 190-193), University Library LMU, Munich, Germany. Ocak, G., Akgül, A., & Yıldız, S. Ş. (2010). İlköğretim öğrencilerinin ortaöğretime geçiş sistemine (OGES) yönelik görüşleri (Afyonkarahisar Örneği) [The examination of the students, views towards the transition to the secondary school who are at primary school]. Ahi Evran University Journal of Kirsehir Education Faculty, 11(1), 37-55. Retrieved from https://dergipark.org.tr/en/pub/kefad/issue/59507/855652 Access Date: 22/09/2022 O'Connor, C. (1997). Dispositions toward (collective) struggle and educational resilience in the inner city: A case analysis of six African-American high school students. American Educational Research Journal, 34(4), 593-629. https://dx.doi.org/10.3102/00028312034004593 Oladokun, V. O., Adebanjo, A. T., & Charles-Owaba, O.E. (2008). Predicting students’ academic performance using artificial neural network: A case study of an engineering course. The Pacific Journal of Science and Technology 9(1), 72-79. Retrieved from http://ir.library.ui.edu.ng/handle/123456789/1796 Access Date: 22/09/2022 Oral, I., & Mcgivney, E. (2013). Türkiye’de matematik ve fen bilimleri alanlarında öğrenci performansı ve başarının belirleyicileri (TIMSS 2011 analizi) [Student performance and determinants of success in mathematics and science in Turkey (TIMSS 2011 analysis)]. İstanbul: Education Reform Initiative. Retrieved from https://www.egitimreformugirisimi.org/timss-2011-analizi/ Önen, E. (2003). Ortaöğretim kurumları öğrenci seçme ve yerleştirme sınav başarısı ve lise 1. sınıftaki akademik başarıya ilişkin bir yordama geçerliği çalışması: Fen lisesi örneği [A validity study related to secondary school institutions student selection and placement exam's achievement and academic achievement at high school: Science school sample]. (Master’s thesis), Ankara University, Ankara. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Öntaş, T., Çoban, O., & Yıldırım, E. (2020). Ortaokul sosyal bilgiler ve T.C. İnkılap Tarihi ve Atatürkçülük derslerindeki öğrenci başarılarının LGS T.C. İnkılap Tarihi ve Atatürkçülük testini yordama gücü [Predictive power of students’ success in secondary school social studies and Turkish Revolution History and Kemalism lessons on Turkish Revolution History and Kemalism high school entrance test]. Marmara University Atatürk Education Faculty Journal of Educational Sciences, 52(52), 579-598. https://dx.doi.org/10.15285/maruaebd.691741 Özçelik, D. A. (1998). Ölçme ve değerlendirme [Measurement and evaluation]. (3rd ed.), Ankara: MSPC Publications. Özdemir, A. (2014). İlköğretim ve ortaöğretim başarı ölçülerinin yükseköğretime geçiş sınav puanlarını yordama gücü [Prediction power of middle school and high school grades on higher education exam]. (Master’s thesis), Hacettepe University, Ankara. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Özdemir, A., & Gelbal, S. (2016). İlköğretim ve ortaöğretim başarı ölçülerinin yükseköğretime geçiş sınav puanlarını yordama gücü [Predictive power of primary and secondary school success criterion on transition to higher education examination scores]. Journal of Measurement and Evaluation in Education and Psychology, 7(2), 309-334. https://dx.doi.org/10.21031/epod.277887 Özkan, M., & Özdemir, E. B. (2014). Ortaokul 8. sınıf öğrencilerinin ve öğretmenlerinin ortaöğretime geçişte uygulanan merkezi ortak sınavlara ilişkin görüşleri [The opinions of the secondary school, 8. grade students and the teachers on the central examinations held during the transition to the secondary education]. Journal of History School, 7(10), 441-453. https://dx.doi.org/10.14225/Joh641 Öztürk, A. (2009). Toplam kalite yönetimi ve planlaması [Total quality management and planning]. Bursa: Ekin Publications. Parlak, B. & Tatlıdil, H. (2013). 8. sınıf öğrencilerinin okul başarıları ile test puanları arasındaki ilişkinin çok boyutlu incelenmesi [Multivariate analysis of the relationship between the academic achievement and test scores of 8th grade students]. Dumlupınar University Journal of Social Sciences, (special ed.), 335-350. Retrieved from https://dergipark.org.tr/en/download/article-file/360934 Access Date: 22/09/2022 Rahmani, B., & Aprilianto, H. (2014). Early model of student's graduation prediction based on neural network. Telkomnika (Telecommunication Computing Electronics and Control), 12(2), 465-474. https://dx.doi.org/10.12928/telkomnika.v12i2.47 Sarı, İ. (2018). The prediction of success of TEOG in the history of revolution and Kemalism course at the stage of transition from TEOG to LGS. Universal Journal of Educational Research, 6(12), 2925-2930. https://dx.doi.org/10.13189/ujer.2018.061228 Sarı, İ. (2019). The Prediction of the history of revolution and Kemalism course success on LGS success. International Online Journal of Educational Sciences, 11(3), 235-247. https://dx.doi.org/10.15345/iojes.2019.03.016 Sarıer, Y. (2021). PISA uygulamalarında Türkiye’nin performansını ve öğrenci başarısını yordayan değişkenler [Turkey's performance in PISA applications and variables predicting student’s success]. Turkish Journal of Social Research, 25(3), 905-926. Retrieved from https://dergipark.org.tr/tr/pub/tsadergisi/issue/66172/757533 Access Date: 22/09/2022 Şen, B., Uçar, E., & Delen, D. (2012). Predicting and analyzing secondary education placement-test scores: A data mining approach. Expert Systems with Applications, 39(10), 9468-9476. https://dx.doi.org/10.1016/j.eswa.2012.02.112 Şengür, D., & Tekin, A. (2013). Öğrencilerin mezuniyet notlarının veri madenciliği metotları ile tahmini [Prediction of student’s grade point average by using the data mining methods]. Journal of Information Technologies, 6(3), 7-16. Retrieved from https://dergipark.org.tr/tr/pub/gazibtd/issue/6629/88010 Access Date: 22/09/2022 Shen, C., & Talavera, O. (2003). The effects of self-perception on students’ mathematics and science achievement in 38 countries based on TIMSS 1999 data. Boston: College Department of Economics, Academic Technology Services. Retrieved from https://ideas.repec.org/p/boc/asug03/08.html Access Date: 22/09/2022 Tepehan, T. (2011). Türk öğrencilerinin PİSA başarılarının yordanmasında yapay sinir ağı ve lojistik regresyon modeli performanslarının karşılaşırılması [Comparison of artificial neural network and logistic regression model performances in predicting PISA success of Turkish students]. (Doctoral dissertation), Hacettepe University, Ankara. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Tosun, Ö. (2007). Sınıflandırmada yapay sinir ağları ve karar ağaçları karşılaştırması: Öğrenci başarıları üzerine bir uygulama [Artificial neural networks decision tree comparison in classification analysis: An application on student’s success]. (Master’s thesis), İstanbul Technical University, İstanbul. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Turhan, K., Kurt, B., & Engin, Y. Z. (2013). Estimation of student success with artificial neural networks. Education and Science, 38(170). Retrieved from https://www.proquest.com/scholarly-journals/estimation-student-success-with-artificial-neural/docview/1459946819/se-2 Access Date: 09/11/2019 Üstün, U., Özdemir, E., Cansız, M., & Cansız, N. (2019). Türkiye’deki öğrencilerin fen okuryazarlığını etkileyen faktörler nelerdir? PISA 2015 verisine dayalı bir hiyerarşik doğrusal modelleme çalışması [What are the factors affecting Turkish students’ science literacy? A hierarchical linear modelling study using PISA 2015 data]. Hacettepe University Journal of Education, 35(3), 720-732. https://dx.doi.org/10.16986/HUJE.2019050786 Yılmaz, B. (2015). Akarçay havzasında çözünmüş oksijen değerlerinin yapay sinir ağları ile belirlenmesi [Determination of dissolved oxygen values in akarçay basin with artificial neural networks] (Master’s thesis), Republic of Turkey Ministry of Forestry and Water Affairs, Ankara. Retrieved from https://www.tarimorman.gov.tr/SYGM/Belgeler/TEZLER/BekirYilmazTez%20(2).pdf Access Date: 10/11/2019
Yetkin, M. (2014). Tanker şamandıra bağlama sistemlerinin yapay sinir ağları tekniğiyle optimizasyonu [Optimization of spread mooring systems with artificial neural networks]. (Master’s thesis), İstanbul Technical University, İstanbul. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi Access Date: 22/09/2022 Zajacova, A., Lynch, S. M., & Espenshade, T. J. (2005). Self-effıcacy, stress, and academıc success in college. Research in Higher Education, 46(6), 677-706. https://dx.doi.org/10.1007/s11162-004-4139-z Zhang, G. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35–62. https://dx.doi.org/10.1016/S0169-2070(97)00044-7 |